olefin. Measurements of gas density made by a magnetic gas-density balance showed that three separations were not sufficient, as 1 to 5% of the olefin one carbon atom lower in the series was present.

Owing to the presence of relatively large amounts of ethyl mercaptan in the C<sub>6</sub> fraction, it was necessary to find a satisfactory method for separating C<sub>2</sub>H<sub>5</sub>SH and C<sub>6</sub>H<sub>12</sub>. Condensation on a bright surface of metallic sodium was found fairly satisfactory. Experiments made with pure C<sub>2</sub>H<sub>5</sub>SH showed that at temperatures between 0° and  $-10^{\circ}$  hydrogen and sodium mercaptate were the main products, only a few per cent. of diethyl sulfide being obtained. The analytical data are given in Table III.

#### TABLE III

| ANALVSIS.                              | OF          | REACTION  | PRODUCTS   | PER   | CENT           |
|----------------------------------------|-------------|-----------|------------|-------|----------------|
| TTT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT | <b>OT</b> . | TURVETION | I RODUCIO, | 1 121 | <b>U</b> L.11. |

| Compound                       | 2-hour<br>experiments | 3-hour<br>experiments |
|--------------------------------|-----------------------|-----------------------|
| Propylene                      | 34.4                  | 39.2                  |
| Butylenes                      | 31.4                  | 29.1                  |
| Pentenes                       | 29.0                  | 14.4                  |
| Hexenes                        | 2.8                   | 14.4                  |
| Higher olefins                 | ${f 2}$ . ${f 4}$     | 2.9                   |
| Ratio of propylene to butylene | 1.1                   | 1.35                  |

The increase in the  $C_3H_6/C_4H_8$  ratio in the third hour seem to confirm the evidence presented in the first paper<sup>3</sup> concerning the primary product of the reaction. The question is, however, not answered, for even in the two-hour sample corresponding to polymerization of only about

1% of the total ethylene present the fractions of  $C_3H_d$  and  $C_5H_{10}$  are of the same order as that of  $C_4H_8$ .

## Summary

Several methods of preparation of "pure" ethylene were tried in an unsuccessful effort to obtain reproducible rates of polymerization. It was found that the addition of small amounts (about 0.1 per cent.) of ethyl mercaptan to ethylene prepared by fractionation of "anaesthesia grade" tank ethylene, decreased the rate of polymerization about tenfold; and the  $C_2H_4 + C_2H_5SH$ mixture polymerized at rates which were reproducible to within about 5%. These rates were in good agreement with the lowest rates obtained in the absence of the mercaptan. The addition of mercaptan did not eliminate the induction period observed in ethylene to which no mercaptan had been added: but did cut down markedly the duration of this induction period. The latter appears to be due to the rate of formation of some intermediate compound which survives freezing to  $-180^{\circ}$  and subsequent revaporization into the reaction chamber at 393°. The polymerization of ethylene is probably not a simple bimolecular reaction. The evidence as to the nature of the primary product is not conclusive but indicates that butylene precedes propylene. The activation energy is 43,500 cal.

PITTSBURGH, PA.

RECEIVED JULY 19, 1935

[CONTRIBUTION FROM FERTILIZER INVESTIGATIONS, BUREAU OF CHEMISTRY AND SOILS]

# The Partial Molal Volumes of Ammonia and Hydrogen in Liquid Ammonia–Hydrogen Mixtures under Pressure at 100°

## By R. WIEBE AND T. H. TREMEARNE

Ångström<sup>1</sup> measured the change of volume of water and various other organic liquids when hydrogen and other gases were dissolved in them. From his measurements he calculated

 $\Delta V / \Delta$ 

$$V_{\rm g} = \delta$$
 (1)

wherein  $\Delta V_{\rm g}$  denotes the volume of gas at standard temperature and pressure dissolved, and  $\Delta V$  the attending increase in the volume of solvent at constant temperature and pressure. He found that under atmospheric pressure,  $\delta$  remained constant with varying  $V_{\rm g}$ , Horiuti<sup>2</sup> extended the

Ångström, Wied. Ann., 15, 297 (1882); ibid., 33, 223 (1888).
Horiuti, Sci. Papers Inst. Phys. Chem. Research (Tokyo), No. 341, 17, 125-256 (1931).

work of Ångström and confirmed the constancy of  $\delta$  with concentration in the low pressure region, with sulfur dioxide in various organic liquids an exception.

Upon multiplying both sides of Eq. (1) by  $V_0$ , the volume of a mole of the dissolved gas at standard temperature and pressure we obtain  $\Delta V/(\Delta V_g/V_0) = \Delta V/\Delta n_2 = V_0 \delta$ , which leads at once to the relation

$$(\mathrm{d} V/\mathrm{d} n_2)_{\mathrm{P},\mathrm{T}} \equiv \bar{v}_2 = V_0 \qquad (2)$$

first stated explicitly by Horiuti<sup>2</sup> (p. 136).

Ångström and Horiuti both worked at low concentrations. At the relatively high concentrations used in the present work it is found that for hydrogen in liquid ammonia,  $\bar{v}_2$ , and hence  $\delta$  also, is positive and increases with the concentration of hydrogen except at the lowest pressure. Then because<sup>3</sup>  $N_1(d\bar{v}_1/dN_1)_{\rm P,T} = -N_2(d\bar{v}_2/dN_2)_{\rm P,T}$ , it follows that the partial molal volume  $\bar{v}_1$  of ammonia decreases as the concentration of hydrogen increases.



Fig. 1.—Molal volume of liquid ammonia hydrogen mixtures and partial molal volumes of liquid ammonia.

# Apparatus and Procedure

The apparatus was identical with one used previously<sup>4</sup> except for a section of tubing fitted with a valve at each end and connected with the lower part of the high pressure bomb. At frequent intervals the volume of this section of tubing was measured by filling it with hydrogen at 100 and 200 atmospheres. In each experiment a sample of the equilibrium mixture from the bomb was turned into this calibrated section, and cut off. The amount of each constituent contained therein could then be determined, following methods previously outlined.

This device permits samples to be made up at (3) Lewis and Randall, "Thermodynamics," McGraw-Hill Book Co., Inc., New York City, 1923, p. 43. (4) R. Wiebe and T. H. Tremearne, THIS JOURNAL, 55, 975 (1933). concentrations intermediate between pure solvent (liquid ammonia) and saturation. The mixture in the calibrated tube—taken, for example, from a 400 atmosphere equilibrium mixture—can be raised quickly to a higher pressure, say 600 atmospheres, by increasing the pressure of the gas above the solution in the bomb to this figure. This new pressure is transmitted instantly to the contents of the tube, which then unsaturated can be cut off and analyzed as before.

The mixture in the bomb is itself unsaturated when it is suddenly subjected to a new pressure, whereupon diffusion begins at once, attended by a downward creep in pressure. The pressure reading is taken at the moment of cut-off. Diffusion to the bottom of the bomb is slow and there is sufficient opportunity to make one or two analyses before the composition of the samples is affected.

### Results

The data are given in Table I and the figure. The molal volumes for pure liquid ammonia were calculated from the results of Keyes.<sup>5</sup> The first

|                |          | TABLE I                       |                |           |      |             |
|----------------|----------|-------------------------------|----------------|-----------|------|-------------|
| AVERAGE        | VALUES   | CALCULATED I                  | ROM            | NUMBER    | OF   | RUNS        |
| II V DIGIOD    | • 110000 | GIVEN                         | 10011          | I C MD DR | ••   | 100110      |
| Numb<br>of run | er<br>s  | Mole fraction<br>of ammonia 2 | <b>n</b><br>N1 | v = V/(2) | n1 + | <b>n</b> 2) |
|                |          | 100 atm.                      |                |           |      |             |
|                |          | 1,0000                        |                | 35.4      | 156  |             |
| 6              |          | 0.9888                        |                | 37.1      | 89   |             |
|                |          | 200 atm.                      |                |           |      |             |
|                |          | 1.0000                        |                | 34.0      | 017  |             |
| $^{2}$         |          | 0.9888                        |                | 34.6      | 395  |             |
| 7              |          | .9612                         |                | 36.2      | 276  |             |
| $^{2}$         |          | .9589                         |                | 36.3      | 343  |             |
| 4              |          | .9584                         |                | 36.3      | 577  |             |
|                |          | 400 atm.                      |                |           |      |             |
|                |          | 1.0000                        |                | 31.7      | 739  |             |
| 1              |          | 0.9588                        |                | 33.1      | 18   |             |
| 1              |          | .9582                         |                | 33.0      | 071  |             |
| 5              |          | . 9094                        |                | 34.9      | 963  |             |
| 3              |          | . 9036                        |                | 35.2      | 211  |             |
| 1              |          | . 9026                        |                | 35.2      | 244  |             |
| 3              |          | .9024                         |                | 35.1      | 172  |             |
|                |          | 600 atm.                      |                |           |      |             |
|                |          | 1,0000                        |                | 30.3      | 399  |             |
| 1              |          | 0.9591                        |                | 31.1      | 47   |             |
| 1              |          | .9025                         |                | 32.3      | 597  |             |
| 3              |          | .8527                         |                | 33.8      | 391  |             |
|                |          | 800 atm.                      |                |           |      |             |
|                |          | 1.0000                        |                | 29.4      | 419  |             |
| 1              |          | 0.8529                        |                | 31.7      | 79   |             |
| 3              |          | 8083                          |                | 32.7      | 701  |             |

(5) Frederick G. Keyes, ibid., 53, 965 (1931).

we

column of Table I gives the number of individual runs from which the data were computed. The partial molal volumes were calculated from the relations<sup>3</sup> (p. 38)

$$\bar{v}_1 = v - N_2 (dv/dN_2)$$
  
 $\bar{v}_2 = v + N_1 (dv/dN_2)$ 

 $v = V/(n_1 + n_2)$  being the molal volume of the mixture and  $N_1$  the mole fraction of ammonia, both of which are given in Table I. The derivative  $dv/dN_2$  was obtained from suitable equations representing the molal volume vs.  $N_2$  curves in the figure. Table II and the figure show the partial molal volumes.

|        | TABLE II         |                  |
|--------|------------------|------------------|
| $N_1$  | $\overline{v}_1$ | $\overline{v}_2$ |
|        | 100 atm.         |                  |
| 1.0000 | 35.46            | 190.2            |
| 0.99   | 35.46            | 190.2            |
| .9888  | 35.46            | 190.2            |
|        | 200 atm.         |                  |
| 1.0000 | 34.02            | 95.16            |
| 0.99   | 34.02            | 94.20            |
| .9888  | 34.03            | 93.88            |
| .96    | 34.10            | 90.92            |
| .9586  | 34.11            | 90.77            |
|        | 400 atm.         |                  |
| 1 0000 | 31.74            | 62.13            |
| 0.99   | 31.73            | 63.23            |
| .96    | 31.65            | 66.45            |
| .9585  | 31.64            | 66.65            |
| .91    | 31.29            | 71.60            |
| .9029  | 31.22            | 72.62            |
|        | 600 atm.         |                  |
| 1.0000 | 30.40            | 50.66            |
| 0.99   | 30.40            | 51.13            |
| .96    | 30.36            | 52.50            |
| 9591   | 30.36            | 52.54            |
| .91    | 30.21            | 54.68            |
| .9025  | 30.18            | 55.00            |
| , 86   | 29.94            | 56.75            |
| .8527  | 29.89            | 57.04            |
|        | 800 atm.         |                  |
| 1,0000 | 29.42            | 41.91            |
| 0.99   | 29.42            | 42.39            |
| .96    | 29.38            | 43.80            |
| .91    | 29.22            | 46.06            |
| .86    | 28.95            | 48.20            |
| .8529  | 28.42            | 48.49            |
| 8083   | 28.53            | 50.28            |

We wish to point out briefly the thermodynamic significance of the work. At equilibrium where  $d\vec{F}_1 = d\vec{F}_1' \qquad (3)$   $\overline{F}_1$  and  $\overline{F}'_1$  being the partial molal free energies of constituent 1 in the liquid and gas phases respectively, we have at constant temperature<sup>3</sup> (p. 216)  $(d\overline{F}/dP)_{N_1} dP + (d\overline{F}_1/dN_1)_P dN_1 = (d\overline{F}'_1/dP)_{N'_1} dP + (d\overline{F}'_1/dN'_1)_P dN'_1$ 

Transposing and noting that

$$(\mathrm{d}\overline{F}_1/\mathrm{d}P)_{N_1} = \overline{v}$$
 and  $(\mathrm{d}\overline{F}_1'/\mathrm{d}P)_{N_1'} = \overline{v}_1'$ 

 $(\mathrm{d}N_{\mathrm{l}}/\mathrm{d}P)_{\mathrm{sat.}}$  =  $(\overline{v}' - \overline{v}_{\mathrm{l}} + (\mathrm{d}\overline{F'}/\mathrm{d}N')_{P})$ 

$$(\mathrm{d}N')_P (\mathrm{d}N'/\mathrm{d}P)_{\mathrm{sat.}})/(\mathrm{d}ar{F}_1/\mathrm{d}N_1)_P$$

The values of  $(dN_1/dP)_{sat.}$  are readily calculated from previous work<sup>6</sup> and are given in Table III. The value of  $\bar{v}_1$  is known from the present work. Further work on the gas phase at this Laboratory will supply directly  $\bar{v}'_1(d\bar{F}'_1/dN'_1)_P$  and  $(dN'_1/dP)_{sat.}$  The solubility  $(dN_1/dP)_{sat.}$  could be calculated indirectly provided we knew the value of  $(d\bar{F}_1/dN_1)_P$  at one isobar.

|                            | TABLE III                      |           |
|----------------------------|--------------------------------|-----------|
| Total pressure,<br>in atm. | Mole fraction of ammonia $N_1$ | $dN_1/dP$ |
| 75                         | 0.9956                         | 0.00031   |
| 100                        | .9882                          | 30        |
| 150                        | .9731                          | 30        |
| 200                        | . 9585                         | 29        |
| 300                        | . 9302                         | <b>28</b> |
| 400                        | . 9035                         | 27        |
| 500                        | .8783                          | 25        |
| 600                        | . 8546                         | 23        |
| 700                        | .8329                          | 22        |
| 800                        | .8118                          | 21        |
| 900                        | .7917                          | 20        |
| 1000                       | .7723                          | 19        |

This scheme has already been used for liquidsolid system under pressure by Adams and Gibson.<sup>7</sup>

### Summary

The volumes of ammonia-hydrogen mixtures in the liquid phase have been measured.

The partial molal volumes of both constituents were calculated.

The thermodynamic significance of the data has been discussed and the desirability of further measurements pointed out.

WASHINGTON, D. C. RECEIVED SEPTEMBER 30, 1935

(6) R. Wiebe and T. H. Tremearne, THIS JOURNAL, **56**, 2357 (1934).

(7) L. H. Adams, *ibid.*, **53**, 3769 (1931); *ibid.*, **54**, 2229 (1932);
L. H. Adams and R. E. Gibson, *ibid.*, **54**, 4520 (1932).